

Bandwidth Test Controller: An
Internet2 Cookbook

Disclosure/Disclaimer

This material is based, in part, on work supported by the National Science Foundation
(NSF) under Grant No. ANI-0314723. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSF.

This document was developed to be used in conjunction with a Network Performance
Workshop; for more information on these workshops (upcoming and past), see:
http://e2epi.internet2.edu/network-perf-wk/.

http://e2epi.internet2.edu/network-perf-wk/

The Bandwidth Test Controller (BWCTL) tool was developed for use with E2E piPEs
and the Abilene Measurement Infrastructure. More information on this tool can be found
at: http://e2epi.internet2.edu/bwctl/.

This cookbook has two parts: an Overview of the tool, with examples of its usefulness,
and an Installation Guide, that walks you through setting up Bandwidth Test Controller
servers at your location.

An Overview of the Bandwidth Test Controller
This section has information on the motivation for the tool, benefits, functions and
features, and implementation. It also includes a flow chart for the tool and information on
the availability of the code and publicly-accessible servers.

Motivation
Users want to verify available bandwidth from their site to another site. Currently, Iperf is
one of the most commonly used tools for throughput tests. The major objective for the
Bandwith Test Controller was to create a resource allocation and scheduling daemon for
the arbitration of Iperf tests so that regularly-scheduled and on-demand tests could
coexist.

Methodology
The approach taken by the Bandwidth Test Controller was to verify available bandwidth
from each endpoint to points in the middle to determine the problem area. This is,
arguably, one of the best ways to determine if an application will work because it is doing
the throughput test end-to-end exactly as the application would be doing it.

Benefits
The usual manner this type of testing was performed, before the development of the
Bandwidth Test Controller, was to run Iperf or a similar tool on two endpoints and hosts
on intermediate paths. [If NOC operators had a dime for every time someone asked them
to start an Iperf server somewhere…]

The Bandwidth Test Controller schedules tests in the presence of scarce resources, which
means that you never have to worry about tests running on top of each other (skewing the
results). It allows authorized testers to request and run tests at the first free testing slot
without hands on support from NOC staff. Because the NOC can control how frequent
and long a test may be run, they can allow more end-users the authority to run tests on
their own – instead of having to give users accounts on machines.
There is a good example of how this assisted a scientific community: MIT Haystack
researchers setup Bandwidth Test Controller servers at several of the telescope locations
from which they receive data flows so that when troubles arose, they could immediately
begin testing to locate the problem – instead of having to wait for NOC staff at the
remote locations to assist them. (See http://e2epi.internet2.edu/case-studies/VLBI/cs-
index.html for more details.)

http://e2epi.internet2.edu/bwctl/
http://e2epi.internet2.edu/case-studies/VLBI/cs-index.html
http://e2epi.internet2.edu/case-studies/VLBI/cs-index.html

Implementation
There are pluggable API interfaces to allow different authentication and policy functions
to be incorporated at a later time.
Iperf is the “tester” because it is well-known and widely used. However, Iperf has some
integration problems:

• Iperf server initialization (port number allocation)
• Iperf error conditions
• End of session

These problems will likely show up in your test results just as they do when you normally
run Iperf. The difference is that, when you run Iperf by hand and cancel the test (by
typing Cntrl-C), you are not surprised when you don’t have results from the test. And
almost anyone who has used Iperf has seen particular sessions that take much longer than
expected. Unfortunately, because the Bandwidth Test Controller is scheduling tests and
needs to make sure the “next” test can run, it must kill those particular sessions. Since
Iperf is not closely integrated into the Bandwidth Test Controller, intermediate results are
unavailable for these sessions. Future releases of the Bandwidth Test Controller are likely
to be more integrated with the actual test engine (Iperf).

Along these same lines, the Bandwidth Test Controller has specific difficulties for
scheduling UDP:

• Iperf doesn’t always send at the requested rate
• Iperf sender hangs intermittently
• End of session is difficult to detect, which is problematic for a “scheduled”

timeslot

Functions and Features
The tool contains two applications: bwctld (daemon) and bwctl (client).

Client
The Bandwidth Test Controller client application, bwctl, makes requests to both
endpoints of a test. Communication can be open or authenticated. Requests include a
request for a time slot, as well as a full parameterization of the test.

The Bandwidth Test Controller allows third-party requests between two unrelated servers
using potentially unique authentication to each side. For bandwidth tests from the current
client, the Bandwidth Test Controller offers a server-less option. If no server is available
on the localhost, the client handles the test endpoint. The Bandwidth Test Controller
offers most of the same command line options as does Iperf; some options are limited or
just not implemented. The command line options are as similar to Iperf as possible.
(Sometimes infuriatingly so!)

Daemon
This is where the policy is implemented; bwctld is a traditional accept/fork style daemon
with the parent process also listening for resource requests from child processes. The
bwctld on each test host:

• Accepts requests for “Iperf” tests including time slot and parameters for test
• Responds with a tentative reservation or a denied message (Note: Reservations by

a client must be confirmed with a “start session” message)
• Brokers resources
• Runs tests
• Returns results to both sides of the test (and to the requesting party if it was a

third party request).

Scheduling
A time slot is simply a time-dependant resource that needs to be allocated just like any
other resource. It, therefore, follows the normal resource allocation model described
below. The Bandwidth Test Controller scheduling currently only allows a single test to
happen at a time.

Resource Allocation
The parent bwctld keeps track of current resource utilization needed to implement policy.
Each connection is “classified” (authentication); each classification is hierarchical and
has an associated set of hierarchical limits:

• Connection policy (allow_open_mode)
• Bandwidth (allow_tcp,allow_udp,bandwidth)
• Scheduling (duration,event_horizon,pending)

Architecture

Figure 1: Control Flow for BWCTL Architecture

Overview
bwctld has been developed as a classic accept/fork daemon. The master daemon process
listens for new network connections and also manages the resources for all child bwctld
processes. Once a connection comes in, bwctld forks a child process to handle that
request.

In the event that the local host is one of the endpoints and there is no local bwctld
running, bwctl will spawn additional processes to execute the local side of the test
directly (basically, emulating the functions of the daemon).

Authentication and Authorization
The child (request broker) process deals with all encryption and communication issues
with the client, as well as dealing with all static resource limits. Static resource limits are
those not dependent upon what is currently happening on the node. For example, the
request broker can easily determine if the given client is allowed to do UDP tests without
talking to the master daemon. Once the request broker process determines the request is

valid, it makes a request to the master daemon (resource broker) process for the resources
and time period requested by the client. If the resource broker has the resources available
(including the open time period), it grants the request.

Scheduling
The client always requests the time period for the test. It makes a request to the request
broker process on each endpoint of the test in turn. The time period is requested by
specifying two timestamps. The earliest time and the latest time the client is willing to
allow the test. The request broker either returns a tentative reservation with the first open
time that will fulfill the parameters of the test or a ‘request denied’ message. The client
can then use the tentative reservation time as the earliest time in the request to the request
broker on the other host. Eventually, an agreed upon time will be reached or the latest
time will be reached. If the request broker cannot fulfill the request before the latest time
specified in the request, it will return a ‘server too busy’ message. If the client gets the
same valid time slot from both servers, it must then confirm the reservation with a ‘start
session’ message. The ‘start session’ message must be received before a configurable
timeout period and before the reservation time, or the server will disallow the reservation.

Execution of the Test
Once the client sends the ‘start session’ message, the request broker forks off a peer agent
that is responsible for verifying the time offset to the other endpoint of the test and
initializing the communication socket that will be used to trade results of the test.

If the test endpoint systems have a reasonably close idea of the time, and they can
communicate, the peer agent forks off the test process. The test process waits until the
scheduled start time and then executes Iperf with the correct command-line parameters.

General Requirements

• Iperf version 2.0
• NTP (ntpd) synchronized clock on the local system
• NTP system calls
• To get good results, the end hosts will almost certainly need to be well-tuned

Operational Concerns
Concerns include time and firewalls; time issues include:

• NTP only has a good idea of the time error if it is configured correctly. If it is not
configured correctly, the Bandwidth Test Controller will be forced to terminate
tests before they are completed, making the results unavailable. For the NTP
algorithms to work correctly, NTP must be configured with no fewer than four (4)
clocks. (See http://twiki.ntp.org/bin/view/Support/SelectingOffsiteNTPServers for
more details.)

Firewall issues include:

http://twiki.ntp.org/bin/view/Support/SelectingOffsiteNTPServers

• TCP ports need to be opened for control communication. Both from the client to

the server and for peer connections between the servers. (Details are provided in
the installation guide.)

Policy Issues
The policy issues can best be grouped into two categories. First, it is important to ensure
that the bwctld server is a good network citizen, that it does not use more local host and
network resources than it should, and the integrity of the bwctld server and the data
produced is protected (Security Considerations). Second, controls need to be in place to
allow the available resources to be partitioned among the valid users of the server
(Resource Consumption).

Security Considerations
You need to be concerned about not becoming a 3rd-party DoS source or a DoS target;
other areas to take into consideration are resource consumption, memory, and network
bandwidth.

DoS
Basically, avoid being an attractive nuisance. Unfortunately, obscurity lessens usefulness
so this can only be taken so far. If these machines are not generally available to valid
users, they are not useful. But we encourage you to harden the machines, themselves.

Source
Imagine a large number of compromised bwctld servers being used to direct traffic! A
compromised bwctld server could be used to send packets toward others. The
implementation ensures that sessions cannot be directed to random hosts in
unauthenticated mode. (Only toward the Bandwidth Test Controller-control client.)

Target
Someone might attempt to affect statistics web pages to see how much impact they can
generate. Packets directed toward a bwctld server can and will affect the results of the
valid test traffic.

Resource Consumption
Two controls on resource consumption are time slots and network bandwidth; bwctld has
policy controls to allocate resources to appropriate users. This is done by classifying each
new incoming request either by IP/netmask or using a known AES key. Each
classification is associated with a set of resource limits.

Policy Recommendations
On Abilene, we attempt to be open until we can’t. We recommend that new users restrict
UDP completely, or at least limit the bandwidth. We require AES key authentication for
all users.

Availability
The tool and source code is available at:
http://e2epi.internet2.edu/bwctl/download.html.

Email-based discussion lists are available; go to the http://e2epi.internet2.edu/bwctl/ web
site and click:

• bwctl-users – General discussion on the Bandwidth Test Controller tool
• bwctl-announce – Announcements on new features/releases

Publicly-Accessible Servers
Below is a list of publicly-accessible servers. Note that this is not a complete list and
more are being added when they become available. (A more up-to-date list can be
derived by looking at http://e2epi.internet2.edu/pipes/pmp/pmp-dir.html.) Several
institutions also run private servers.

Institution / Network Location Information Page
APAN Japan APAN PMP Info
DANTE/GEANT Europe GEANT PMP Info
ESnet US Nationwide ESnet PMP Info
Hawai'i GigaPoP/University of Hawai'i Honolulu, HA Hawai'i PMP Info
Internet2 / Abilene US Nationwide Abilene PMP Info
KISTI/KREONet2 Korea KISTI PMP Info
MIT / Haystack Observatory Westford, MA Haystack PMP Info
NC-ITEC Raleigh, NC NC-ITEC PMP Info
NOAA Boulder Laboratories Boulder, CO NOAA PMP Info
NORDUnet Sweden NORDUnet PMP Info
Ohio State University Columbus, OH OSU PMP Info
RNP Measurement WG/RNP2 Brazil RNP PMP Info
Southern Crossroads GigaPoP (SoX) Atlanta, GA SoX PMP Info
Swedish University Network Sweden Sunet PMP Info
Swiss Education and Research Network Switzerland SWITCH PMP Info
TWAREN Hsinchu, Taiwan TWAREN PMP Info

Figure 2. Publicly-Accessible One-Way Ping Servers

Internet2 E2E piPEs Project
The focus of this effort is to develop an end-to-end measurement infrastructure capable of
finding network problems. The tools used by this project include the Bandwidth Test
Controller (throughput), One-Way Ping (latency), and NDT (last mile issues). Each of
these tools has a cookbook similar to this one. They can all be accessed through
http://e2epi.internet2.edu/library-list.html.

http://e2epi.internet2.edu/bwctl/
http://e2epi.internet2.edu/bwctl/
http://e2epi.internet2.edu/pipes/pmp/pmp-dir.html
http://www.jp.apan.net/NOC/bwctl/pmp.html
http://www.dante.net/server/show/conWebDoc.1050
https://performance.es.net/PMP.html
http://thundarr.its.hawaii.edu/GigaPOP/e2epipes/pmp-hawaii.htm
http://e2epi.internet2.edu/pipes/pmp/pmp-abilene.html
http://e2epi.internet2.edu/pipes/pmp/PMP-kisti.htm
http://e2epi.internet2.edu/pipes/pmp/haystack.html
http://e2epi.internet2.edu/pipes/pmp/PMP-NC-ITEC.htm
http://hpcs.fsl.noaa.gov/pmp-noaafsl.html
http://www.nordu.net/measurement/bwctl/servers.html
http://e2epi.internet2.edu/pipes/pmp/pmp-osu.html
http://www.nuperc.unifacs.br/observatorio/pmp.html
http://bwctl.sox.gatech.edu/bwctl.html
http://proj.sunet.se/bwctl/pmp-sunet.html
http://e2epi.internet2.edu/pipes/pmp/pmp-switch.htm
http://e2epi.internet2.edu/pipes/pmp/pmp-twaren.htm
http://e2epi.internet2.edu/library-list.html

Installation Guide: Establishing a Bandwidth Test
Control Server
This section contains information on installation and configuration. More information on
the tool can be found at: http://e2epi.internet2.edu/bwctl/.

Components
Everything is contained in a single downloadable tar file. The file is stored on the
Internet2 web site at: http://e2epi.internet2.edu/bwctl/download.html. Supported systems
include:

• FreeBSD 4.x, 5.x
• Linux 2.4, 2.6
• (Most recent versions of UNIX should work)

Requirements and Recommendations
This section covers the hardware requirements, software requirements, and recommended
settings.

Hardware Requirements
• No strict requirements for CPU, Memory, Bus speed, NIC
• Your hardware will dictate the possible intensity of tests you can perform

o More tasking tests require more capable hardware

On Abilene, we use: an Intel SCB2 motherboard with:

• 2 x 1.266 GHz PIII, 512 KB L2 cache, 133 MHz FSB
• 2 x 512 MB ECC registered RAM (one/slot to enable interleaving)
• 2 x Seagate 18 GB SCSI (ST318406LC)
• SysConnect Gigabit Ethernet SK-9843 SX

We use systems configured like this to support 990 Mbps TCP flows between systems
co-located with each Abilene PoP. The specific system requirements you will want are
highly dependent upon the specific Iperf tests you want to perform.
See http://abilene.ucaid.edu/observatory/ for more information on the network
measurement computers co-located at each Abilene PoP.

Software Requirements
• Iperf versions 1.7.0 or 2.0
• NTP (ntpd) synchronized clock on the local system
• Firewalls: leave lots of ports for communication and testing
• End hosts must be tuned! See:

http://www.psc.edu/networking/perf_tune.htmlhttp://www-didc.lbl.gov/TCP-
tuning/buffers.html

http://e2epi.internet2.edu/bwctl/download.html
http://abilene.ucaid.edu/observatory/
http://www.psc.edu/networking/perf_tune.html
http://www-didc.lbl.gov/TCP-tuning/buffers.html
http://www-didc.lbl.gov/TCP-tuning/buffers.html

NTP may be a surprising requirement but scheduling the tests without wasting too much
time between tests requires a reasonable estimate for the accuracy of the local clock.

Network Requirements
If you are working with firewalls, you will need to open the appropriate ports for
communication and testing:

• TCP/8423 (Control communication – client to server)
• TCP/ephemeral (Control communication – server to server: Specific range

settable using peerports in bwctld.conf)
• TCP/5001 (Iperf testing port – Settable to a range using testports in

bwctld.conf)
• UDP/5001 (Iperf testing port – Settable to a range using testports in

bwctld.conf)

Recommended Settings
On Abilene, we attempt to be as open as we can, until we can’t anymore. For the
Bandwidth Test Controller we suggest:

• Limit tests to TCP only (UDP is usually only useful in cases where TCP is not
working well, so TCP is a reasonable place to start.)

• Require authenticated communication for all tests (AES Keys)
• Protect the AES Keys. They are clear-text passwords!

General Security Concerns
As discussed earlier in this manual, the biggest issue for Abilene is: No DoS attacks! The
general approach is: 1) do no harm (we don’t want machines to be a source of DoS
attacks but we would like them to be as available as possible and useful as possible for
debugging) and 2) avoid being an attractive nuisance (obscurity lessens usefulness but do
harden the machines, themselves).

Regarding hardening machines: don’t run anything you don’t have to. Keep up to date
with security patches. Perhaps run a local firewall (on the machine) if it makes sense.
But see if it affects your measurement results and realize that, by default, the Bandwidth
Test Controller will want to use the “ephemeral” TCP ports for peer connections (to a
rough approximation, all those over 1024, but it varies by OS). Consider restricting logins
and where logins can occur. If you’re really good, audit programs on the machine.

Bandwidth Test Controller Security Concerns
These are the resources that are at risk directly from the use of the Bandwidth Test
Controller (issues the configuration must solve).

• Limit the bandwidth that can be consumed
• Limit the type of tests that can be done (TCP/UDP)

Building the Bandwidth Test Controller
To unpack, build, and install the Bandwidth Test Controller, grab the latest tarball at
http://e2epi.internet2.edu/bwctl/download.html, unpack the tar file, and use the
provided configure script and make to create and install the executables:

% gzip -cd bwctl-$VERS.tar.gz | tar xf -
% cd bwctl-$VERS
% ./configure --prefix=/ami

--prefix is only needed if you don't like the default
(/usr/local on most systems)

% make
% make install

Note: This does not install configuration files.

Partitioning Resources
To protect resources you must decide how many of those resources you are willing to
have this activity use, and who you want to use it.

• Decide upon the complete amount of resources it is acceptable for the test host to
consume

• Decide how to allocate those resources among users
• How much of the available time slots should be dedicated to each group of users?
• How much bandwidth total? Per group?
• Keep system load in mind as well as network. The data accuracy will suffer if the

system is too loaded.

Allocating Resources Using Hierarchical Limitclasses
The Bandwidth Test Controller allows hierarchical limitclasses to be defined so available
resources can be partitioned in a hierarchical model.

• Users are grouped into hierarchical limitclasses
• One parent-less class allowed, it defines the total amount of resources available
• When limitclasses are defined, limits of the one and only parent are inherited
• When consumable resources are requested, the limits of the limitclass and all

parent limitclasses must be satisfied (memory/bandwidth/timeslots)

An example of hierarchically organized limitclasses would be:

http://e2epi.internet2.edu/bwctl/download.html

Root Complete set of resources

available
NOC Super-user limits
Peer Extended limits for peer NOC

tests
Normal Reasonable limits for end users
Open Conservative limits for anyone
Hostile Used to “jail” hostile users

You will define the hierarchy in a way that makes sense for the particular groups of users
you have. (It is of course possible to define a flat space where all groups are direct
children of the “root” group if your groups of users are completely unrelated.) Another
probable hierarchy would be defined by creating sub-limitclasses from “normal” for users
from other domains.

Classifying Connections
This was kept as simple as possible for now. There is no DNS matching of any kind.
There are two methods used to classify connections.

IP/netmask
• The IP address of the client is matched against a list of IP netmask specified

subnets and assigned to a limitclass based on the address of the client
• The most specific matching mask wins in the matching algorithm

This does not need to be a “real” sub-net from a routing perspective. The netmask here is
only a way of expressing a range of addresses.

Username and AES key
• Client specifies a username, the server must already know the associated AES key
• AES key is used as a symmetric session key (Client and Server use the key as a

shared secret)

This is basically a static symmetric session key setup. The Bandwidth Test Controller is a
fairly low-level tool and its use of authentication primitives is fairly simplistic. The
current authentication scheme was chosen because it was easy to implement and should
be fairly easy to integrate into a more complete solution. (For example, PKI could be
used in combination with a Diffie-Helman-style key agreement to dynamically allocate
the AES session keys that are then used within the Bandwidth Test Controller protocol.)

Configuring the Bandwidth Test Controller Server
The basic procedure to configure bwctld is to create a bwctld.conf and, optionally, a
bwctld.limits file and a bwctld.keys file. These files need to be installed in the same
directory that is specified with the -c option to bwctld. The recommended directory is
/ami/etc. (The etc directory below your install root.) There are examples of these files in
the bwctl-$VERS/conf sub directory of the distribution.

Configure bwctld.conf
The bwctld.conf file is the configuration file for the bwcltd daemon. It is used to
configure basic operation of the server such as server listening port, the path for Iperf,
and error logging.

The example bwctld.conf file in the conf subdirectory of the distribution is fairly well
annotated to explain all the available options and the bwctld.conf manual page,
http://e2epi.internet2.edu/bwctl/bwctld.conf.man.html, also describes all the available
configuration options.

Most installations will only need to modify the following options:

vardir Directory where bwctld.pid file is stored
user Specifies the uid the bwctld process will run as
group Specifies the gid the bwctld process will run as

Configure bwctld.limits
The bwctld.limits file is used to configure the policy limits for the daemon. It allows the
system administrator to allocate the resources in a variety of ways. There are two parts to
the policy configuration:

Authentication
Who is making the request? This can be very specific to an individual user
or it can be more general in that the connection is coming from some
particular network.

Authorization

Now that the connection has been generally identified, what will bwctld
allow it to do?

The authentication is done by assigning a limitclass to each new connection as it comes
in. Authorization is accomplished by using the set of limits each limitclass has associated
with it. The limits assigned to each limitclasse are hierarchical, so a connection must pass
the limit restrictions of the assigned limitclass as well as all parent classes.

Within the bwctld.limits file, assign lines are used to assign a limitclass to a given
connection. limit lines are used to define a limitclass and set the limits associated with

http://e2epi.internet2.edu/bwctl/bwctld.conf.man.html

each limitclass. The file is read sequentially, and it is not permitted to use a limitclass
before it is defined using a limit line. An example of limitclass definition would be:

total available
limit root with \
 bandwidth=900m, \
 duration=0, \
 allow_tcp=on, \
 allow_udp=on, \
 allow_open_mode=off

Hostile
limit hostile with parent=root, \
 bandwidth=1 \
 allow_tcp=off, \
 allow_udp=off

NOC
limit noc with parent=root, \
 allow_open_mode=on

This example just shows three of the possible limitclasses from the hierarchy described
above. The full set of configuration options available to limit a given limitclass are
described in the bwctld.limits(5) manual page
(http://e2epi.internet2.edu/bwclt/bwcltd.limits.man.html).

The following example shows how you could use IP/netmask assignments to classify
connections from specific hosts:

loopback
assign net ::/127 noc
assign net 127.0.0.1/32 noc
abilene nmslan (observatory systems)
assign net 2001:468:0::/40 noc
assign net 198.32.10.0/23 noc
assign net 10.0.0.0/16 hostile

This example shows how any connections to the server from the loopback interface can
be assigned the limits associated with the noc limitclass. Additionally, the nmslan
systems are assigned to the same limitclass. It is not possible to run a bandwidth test
using bwctl to the local host because you would need an open schedule slot for both the
receiver side of the test and the sender side of the test during the same time period and
bwctld limits the number of open schedule slots to one at a time. However, the
loopback/localhost lines are important if you want to bypass AES authentication for the
local authentication when you are running a local bwcltd. (Remember, if there is no local
bwctld running, bwctl will run the test directly itself.)

This example also illustrates how you can ensure that all connections from a given subnet
are denied unless they are authenticated (See the 10.0.0.0/16 line). The hostile limitclass
has allow_open_mode set to no. Therefore, open mode communications will not be
accepted from this address range. However, users on this subnet can still attempt to use
the username/AES key method of authentication. (If no communication at all is wanted
with a given subnet, that functionality is better provided with a firewall application.)

Netmask assignments should not be trusted too heavily. Loopback is reasonable, and
probably “local” networks, but great care should be taken before extending the model
beyond that.

The following example shows how you could use username assignments to classify
connections from specific users:

network admins
 assign user joe root
 assign user jim root
 assign user bob root

measurement geeks
 assign user boote noc

The bwctld server needs to be able to authenticate that a given user is who they say they
are. This is done using an 128-bit shared key. The username to key association is made
known to bwctld using the bwctld.keys file described below. The user must have an entry
in the bwctld.keys file to be used in the bwctld.limits file. The bwctld process will refuse
to start if a user is listed in the bwctld.limits file if they do not have a key associated in
the bwctld.keys file.

Configure bwctld.keys
The bwctld.keys file is used to hold the identity/AES keys pairs needed for bwctld to
authenticate users. The format of this file is described in the aespasswd(1) manual page.
The location of the bwctld.keys file is controlled by the -c option to bwctld.

bwctld uses symmetric AES keys for authentication. Therefore, the bwctl client will
have to have access to the exact same AES key for authentication by AES to work. Most
likely, the user will simply just know the passphrase that generated the AES key in the
first place. Additionally, it is important that the system administrator and end user ensure
the key is not compromised.

If the bwctl client is able to authenticate using the identity and AES key presented,
bwctld will use the directives found in the bwctld.limits file to map policy restrictions to
this connection.

Username and AES Key Rules:

• Usernames are limited to 16 characters
• AES key is a 128 bit session key
• AES key is not encrypted in the keys file, use UNIX permissions to protect it
• Can use a pass phrase to generate the AES key
• Use aespasswd to add pass phrase generated keys into the keys file
• Client: application prompts user for pass phrase

The normal UNIX protection method would be to run the daemon with specific user or
group permissions that allow it to read the keys file, but limit the users that have access to
it. An example key file might look like:

joe a0167ac6101b360d2f4dd164abba2337
bob 2dc36fc4807894cdfbe180b71d2b4a0f
sam 3fc763fb270ce6ba6e928bd10d4977d3

This is simply a username associated with a hex encoded 128-bit value.

By far the easiest way to create and maintain the bwctld.keys file is to use the aespasswd
application.

aespasswd
This is similar to htpasswd (apache web server); you specify an identity to be added to a
key file and are prompted for a passphrase. This is a convenience since users don’t
remember 128 bit quantities very well. It is used to convert a passphrase into a 128-bit
hex key in a portable way across multiple architectures. For more information, see:
http://e2epi.internet2.edu/bwctl/aespasswd.man.html. This same application is used to
manage key files for bwctl and bwctl so take care which of the files you are editing.

To create a new key file use the ‘-n’ option:

% aespasswd -n -f bwctld.keys demo

Additional usernames can be added by omitting the ‘-n’:

% aespasswd -f bwctld.keys joe

For more complete information, see
http://e2epi.internet2.edu/bwctl/bwctld.keys.man.html,
http://e2epi.internet2.edu/bwctl/aespasswd.man.html, and
http://e2epi.internet2.edu/bwctl/bwctld.limits.man.html.

Running Bandwidth Test Controller
There must be two hosts involved to test the Bandwidth Test Controller. (You can’t
schedule both endpoints of a test on a single host; one of the main reasons to use the
Bandwidth Test Controller is to ensure only one test happens at a time.) It is, however,
possible to run one of the endpoints of the test directly from the client.

Testing the Bandwidth Test Controller Client (bwctl)
First, try a simple test from a client system to one of the Internet2 hosts. (This host is only
guaranteed to be available during the workshop – we tend to try new things on here from
time to time.) You will need to already have a userid/AESkey configured into the
Internet2 bwctld for this to work.

% /ami/bin/bwctl –s nmsx-aami.abilene.ucaid.edu A AESKEY jimbob

http://e2epi.internet2.edu/owamp/aespasswd.man.html
http://e2epi.internet2.edu/owamp/owampd.keys.man.html
http://e2epi.internet2.edu/owamp/aespasswd.man.html
http://e2epi.internet2.edu/owamp/owampd.limits.man.html

bwctl will prompt the user jimbob for the passphrase that was used to generate the AES
key that is being used as the shared secret.

Testing the Bandwidth Test Controller Daemon (bwctld)
The next step is to run a local daemon. Start the daemon, in foreground, during testing by
using the ‘-Z’ option:

% /usr/local/bin/bwctld -c /usr/local/etc –Z

Many of the command-line options are used to override the config file parameters. For
example, the ‘-c’ option will almost always be used, unless the daemon is started from
the config directory.

For more information, see: http://e2epi.internet2.edu/bwctl/bwctld.man.html.

Two Hosts, Two Daemons, One Client
The next step is to do the same local host to remote host as before, but now that you have
a local bwctld running it will manage the local endpoint of the test instead of the client
application. (You should use another window to run this test so you can see the output
form the bwctld process while the client is running.)

% /ami/bin/bwctl –s nmsx-aami.abilene.ucaid.edu A AESKEY jimbob

If you did not bypass authentication using localhost IP masks, you will need to specify
the localhost side of the test explicitly using the –c option, or, if you used the same userid
and AESKEY for your local host as for the Abilene host, you can use the –A flag to
specify the authentication for both sides of the test instead of appending the
authentication information on the end of the –s flag as above. (This is more fully
explained later.)

Other Hosts
The next step is to test between two of your own hosts or between your hosts and other
non-Abilene hosts.

Testing Authentication Options
The fact that the bwctl client application supports multiple keys is useful because you
probably don’t want to share your “internal” key with external organizations since it is a
symmetric key.

Within a single authentication domain (same AES key):

bwctl -A AE AESKEY myname -s hostA -c hostB

Between different authentication domains you append the authentication information on
the end of the –s/-c options:

bwctl -s hostA AE AESKEY myname -c hostB AE AESKEY othername

http://e2epi.internet2.edu/bwctl/bwctld.man.html

Troubleshooting
The most frequently-seen problems are:

1. No control connection

• No daemon running
• Firewall—open control port (4823)

2. Control connection denied
• Improper configuration
• Invalid credentials

3. Initial control connection works - peer connection fails
• Firewall—set peerports and open that range of TCP ports

4. Scheduling problems
• No open slots within the window—use the -L flag to wait for a later slot
• NTP setup incorrectly—set ‘syncfuzz’

5. Iperf connections fail
• Firewall – set iperfports and open that range of TCP/UDP ports

6. Iperf results are bad—or “no data”
• Initial window is too large, iperf can’t finish in given time. Probably indicates

a real network problem, but it is not possible to get results. Try using ‘-i’ flag
to get intermediate data.

• Iperf sometimes has strange interactions in it’s read loop. Just try again.

	Bandwidth Test Controller: An Internet2 Cookbook
	Disclosure/Disclaimer

	An Overview of the Bandwidth Test Controller
	Motivation
	Methodology
	Benefits
	Implementation
	Functions and Features
	Client
	Daemon
	Scheduling
	Resource Allocation
	Architecture
	Overview
	Authentication and Authorization
	Scheduling
	Execution of the Test

	General Requirements
	Operational Concerns

	Policy Issues
	Security Considerations
	DoS
	Source
	Target

	Resource Consumption

	Policy Recommendations

	Availability
	Publicly-Accessible Servers
	Internet2 E2E piPEs Project

	Installation Guide: Establishing a Bandwidth Test Control Se
	Components
	Requirements and Recommendations
	Hardware Requirements
	Software Requirements
	Network Requirements
	Recommended Settings

	General Security Concerns
	Bandwidth Test Controller Security Concerns
	Building the Bandwidth Test Controller

	Partitioning Resources
	Allocating Resources Using Hierarchical Limitclasses

	Classifying Connections
	IP/netmask
	Username and AES key

	Configuring the Bandwidth Test Controller Server
	Configure bwctld.conf
	Configure bwctld.limits
	Configure bwctld.keys
	aespasswd

	Running Bandwidth Test Controller
	Testing the Bandwidth Test Controller Client (bwctl)
	Testing the Bandwidth Test Controller Daemon (bwctld)
	Two Hosts, Two Daemons, One Client
	Other Hosts
	Testing Authentication Options
	Troubleshooting

